Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.430
Filtrar
1.
Int J Pediatr Otorhinolaryngol ; 179: 111929, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38555812

RESUMO

OBJECTIVE: Increasing evidence suggests a link between middle ear inflammation and the development of diesel exhaust particles (DEPs). Chronic middle ear inflammation can lead to bone damage and remodeling. This study aimed to explore the impact of DEPs on the expression of interleukin (IL)-6 and RANKL under conditions of middle ear inflammation. METHODS: DEPs were collected by burning fuel in a diesel engine at the Gwangju Institute of Science and Technology. Human middle ear epithelial cells were cultured to 70-80% confluence in culture plates and then treated with DEPs at concentrations of 0, 5, 10, 20, 40, and 80 µg/mL for 24 h. Cell viability was assessed manually. B6.SJL mice, aged 9 weeks, were exposed to DEPs at a concentration of 200 µg/m3 for 1 h daily over a period of 28 days. The expression levels of IL-6, tumor necrosis factor α, RANKL, and RANK were evaluated using hematoxylin and eosin staining and western blot analysis of the harvested middle ear samples. RESULTS: The viability of human middle ear epithelial cells was found to decrease in a dose-dependent manner after 24 h. The mRNA expression level of IL-6 exhibited the most significant increase at the 48-h mark. In contrast, the mRNA expression levels of RANKL and RANK showed a marked increase as early as 6 h post-exposure, with both genes subsequently displaying a time-dependent decrease. Histological analysis revealed that the middle ear mucosa was thicker in the group exposed to DEPs compared to the control group. Additionally, the protein expression levels of IL-6 and RANKL were elevated in the DEP-exposed group relative to the normal control group. CONCLUSIONS: We confirmed the expression of osteoclast-related proteins in the mouse middle ear. These results imply that air pollutants might affect RANKL/RANK signaling, which is associated with bone remodeling.


Assuntos
Poluentes Atmosféricos , Otite Média , Camundongos , Animais , Humanos , Emissões de Veículos/toxicidade , Interleucina-6 , RNA Mensageiro
2.
Inhal Toxicol ; 36(3): 189-204, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466202

RESUMO

OBJECTIVE: Inhalation of diesel exhaust (DE) has been shown to be an occupational hazard in the transportation, mining, and gas and oil industries. DE also contributes to air pollution, and therefore, is a health hazard to the general public. Because of its effects on human health, changes have been made to diesel engines to reduce both the amounts of particulate matter and volatile fumes they generate. The goal of the current study was to examine the effects of inhalation of diesel exhaust. MATERIALS AND METHODS: The study presented here specifically examines the effects of exposure to 0.2 and 1.0 mg/m3 DE or filtered air (6h/d for 4 d) on measures of peripheral and cardio-vascular function, and biomarkers of heart and kidney dysfunction in male rats. A Tier 2 engine used in oil and gas fracking operations was used to generate the diesel exhaust. RESULTS: Exposure to 0.2 mg/m3 DE resulted in an increase in blood pressure 1d following the last exposure, and increases in dobutamine-induced cardiac output and stroke volume 1 and 27d after exposure. Changes in peripheral vascular responses to norepinephrine and acetylcholine were minimal as were changes in transcript expression in the heart and kidney. Exposure to 1.0 mg/m3 DE did not result in major changes in blood pressure, measures of cardiac function, peripheral vascular function or transcript expression. DISCUSSION AND CONCLUSIONS: Based on the results of this study, we suggest that exposure to DE generated by a Tier 2 compliant diesel engine generates acute effects on biomarkers indicative of cardiovascular dysfunction. Recovery occurs quickly with most measures of vascular/cardiovascular function returning to baseline levels by 7d following exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Masculino , Ratos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Material Particulado/toxicidade , Biomarcadores , Exposição por Inalação/efeitos adversos
3.
Part Fibre Toxicol ; 21(1): 15, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468337

RESUMO

BACKGROUND: Particulate matter 2.5 (PM2.5) deposition in the lung's alveolar capillary region (ACR) is significantly associated with respiratory disease development, yet the molecular mechanisms are not completely understood. Adverse responses that promote respiratory disease development involve orchestrated, intercellular signaling between multiple cell types within the ACR. We investigated the molecular mechanisms elicited in response to PM2.5 deposition in the ACR, in an in vitro model that enables intercellular communication between multiple resident cell types of the ACR. METHODS: An in vitro, tri-culture model of the ACR, incorporating alveolar-like epithelial cells (NCI-H441), pulmonary fibroblasts (IMR90), and pulmonary microvascular endothelial cells (HULEC) was developed to investigate cell type-specific molecular responses to a PM2.5 exposure in an in-vivo-like model. This tri-culture in vitro model was termed the alveolar capillary region exposure (ACRE) model. Alveolar epithelial cells in the ACRE model were exposed to a suspension of diesel exhaust particulates (DEP) (20 µg/cm2) with an average diameter of 2.5 µm. Alveolar epithelial barrier formation, and transcriptional and protein expression alterations in the directly exposed alveolar epithelial and the underlying endothelial cells were investigated over a 24 h DEP exposure. RESULTS: Alveolar epithelial barrier formation was not perturbed by the 24 h DEP exposure. Despite no alteration in barrier formation, we demonstrate that alveolar epithelial DEP exposure induces transcriptional and protein changes in both the alveolar epithelial cells and the underlying microvascular endothelial cells. Specifically, we show that the underlying microvascular endothelial cells develop redox dysfunction and increase proinflammatory cytokine secretion. Furthermore, we demonstrate that alveolar epithelial MAPK signaling modulates the activation of NRF2 and IL-8 secretion in the underlying microvascular endothelial cells. CONCLUSIONS: Endothelial redox dysfunction and increased proinflammatory cytokine secretion are two common events in respiratory disease development. These findings highlight new, cell-type specific roles of the alveolar epithelium and microvascular endothelium in the ACR in respiratory disease development following PM2.5 exposure. Ultimately, these data expand our current understanding of respiratory disease development following particle exposures and illustrate the utility of multicellular in vitro systems for investigating respiratory tract health.


Assuntos
Células Endoteliais , Emissões de Veículos , Emissões de Veículos/toxicidade , Células Endoteliais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Interleucina-8/metabolismo , Endotélio , Material Particulado/toxicidade
4.
Aging (Albany NY) ; 16(5): 4348-4362, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431308

RESUMO

Diesel exhaust particles (DEPs) are major air pollutants emitted from automobile engines. Prenatal exposure to DEPs has been linked to neurodevelopmental and neurodegenerative diseases associated with aging. However, the specific mechanism by DEPs impair the hippocampal synaptic plasticity in the offspring remains unclear. Pregnant C57BL/6 mice were administered DEPs solution via the tail vein every other day for a total of 10 injections, then the male offsprings were studied to assess learning and memory by the Morris water maze. Additionally, protein expression in the hippocampus, including CPEB3, NMDAR (NR1, NR2A, NR2B), PKA, SYP, PSD95, and p-CREB was analyzed using Western blotting and immunohistochemistry. The alterations in the histomorphology of the hippocampus were observed in male offspring on postnatal day 7 following prenatal exposure to DEPs. Furthermore, 8-week-old male offspring exposed to DEPs during prenatal development exhibited impairments in the Morris water maze test, indicating deficits in learning and memory. Mechanistically, the findings from our study indicate that exposure to DEPs during pregnancy may alter the expression of CPEB3, SYP, PSD95, NMDAR (NR1, NR2A, and NR2B), PKA, and p-CREB in the hippocampus of both immature and mature male offspring. The results offer evidence for the role of the NMDAR/PKA/CREB and CPEB3 signaling pathway in mediating the learning and memory toxicity of DEPs in male offspring mice. The alterations in signaling pathways may contribute to the observed damage to synaptic structure and transmission function plasticity caused by DEPs. The findings hold potential for informing future safety assessments of DEPs.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Emissões de Veículos , Feminino , Gravidez , Humanos , Camundongos , Animais , Masculino , Emissões de Veículos/toxicidade , Aprendizagem em Labirinto , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal , Proteínas de Ligação a RNA/metabolismo
5.
Cardiovasc Toxicol ; 24(4): 396-407, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451349

RESUMO

Intravenous injection of capsaicin produces vagal-mediated protective cardio-pulmonary (CP) reflexes manifesting as tachypnea, bradycardia, and triphasic blood pressure (BP) response in anesthetized rats. Particulate matter from diesel engine exhaust has been reported to attenuate these reflexes. However, the effects of gaseous constituents of diesel exhaust are not known. Therefore, the present study was designed to investigate the effects of gaseous pollutants in diesel exhaust, on capsaicin-induced CP reflexes in rat model. Adult male rats were randomly assigned to three groups: Non-exposed (NE) group, filtered diesel exhaust-exposed (FDE) group and N-acetyl cysteine (NAC)-treated FDE group. FDE group of rats (n = 6) were exposed to filtered diesel exhaust for 5 h a day for 5 days (D1-D5), and were taken for dissection on day 6 (D6), while NE group of rats (n = 6) remained unexposed. On D6, rats were anesthetized, following which jugular vein was cannulated for injection of chemicals, and femoral artery was cannulated to record the BP. Lead II electrocardiogram and respiratory movements were also recorded. Results show that intravenous injection of capsaicin (0.1 ml; 10 µg/kg) produced immediate tachypneic, hyperventilatory, hypotensive, and bradycardiac responses in both NE and FDE groups of rats. However, these capsaicin-induced CP responses were significantly attenuated in FDE group as compared to the NE group of rats. Further, FDE-induced attenuation of capsaicin-evoked CP responses were diminished in the N-acetyl cysteine-treated FDE rats. These findings demonstrate that oxidant stress mechanisms could possibly be involved in inhibition of CP reflexes by gaseous pollutants in diesel engine exhaust.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Ratos , Masculino , Animais , Ratos Wistar , Emissões de Veículos/toxicidade , Capsaicina/farmacologia , Gases , Cisteína , Poluentes Atmosféricos/toxicidade , Reflexo
6.
J Hazard Mater ; 469: 134084, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518700

RESUMO

Research on airborne ultrafine particles (UFP) is driven by an increasing awareness of their potential effects on human health and on ecosystems. Brake wear is an important UFP source releasing largely metallic and potentially hazardous emissions. UFP uptake into plant tissues could mediate entry into food webs. Still, the effects of these particles on plants have barely been studied, especially in a realistic setting with aerial exposure. In this study, we established a system designed to mimic airborne exposure to ultrafine brake dust particles and performed experiments with the model species Arabidopsis thaliana. Using advanced analytical methods, we characterized the conditions in our exposure experiments. A comparison with data we obtained on UFP release at different outdoor stations showed that our controlled exposures are within the same order of magnitude regarding UFP deposition on plants at a traffic-heavy site. In order to assess the physiological implications of exposure to brake derived-particles we generated transcriptomic data with RNA sequencing. The UFP treatment led to diverse changes in gene expression, including the deregulation of genes involved in Fe and Cu homeostasis. This suggests a major contribution of metallic UFPs to the elicitation of physiological responses by brake wear derived emissions.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Ecossistema , Monitoramento Ambiental/métodos , Poeira , Tamanho da Partícula , Emissões de Veículos/toxicidade , Emissões de Veículos/análise
7.
Stroke ; 55(4): 1090-1093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38299349

RESUMO

BACKGROUND: Air pollution particulate matter exposure and chronic cerebral hypoperfusion (CCH) contribute to white matter toxicity through shared mechanisms of neuroinflammation, oxidative stress, and myelin breakdown. Prior studies showed that exposure of mice to joint particulate matter and CCH caused supra-additive injury to corpus callosum white matter. This study examines the role of TLR4 (toll-like receptor 4) signaling in mediating neurotoxicity and myelin damage observed in joint particulate matter and CCH exposures. METHODS: Experiments utilized a novel murine model of inducible monocyte/microglia-specific TLR4 knockout (i-mTLR4-ko). Bilateral carotid artery stenosis (BCAS) was induced surgically to model CCH. TLR4-intact (control) and i-mTLR4-ko mice were exposed to 8 weeks of either aerosolized diesel exhaust particulate (DEP) or filtered air (FA) in 8 experimental groups: (1) control/FA (n=10), (2) control/DEP (n=10), (3) control/FA+BCAS (n=9), (4) control/DEP+BCAS (n=10), (5) i-mTLR4-ko/FA (n=9), (6) i-mTLR4-ko/DEP (n=8), (7) i-mTLR4-ko/FA+BCAS (n=8), and (8) i-mTLR4-ko/DEP+BCAS (n=10). Corpus callosum levels of 4-hydroxynonenal, 8-Oxo-2'-deoxyguanosine, Iba-1 (ionized calcium-binding adapter molecule 1), and dMBP (degraded myelin basic protein) were assayed via immunofluorescence to measure oxidative stress, neuroinflammation, and myelin breakdown, respectively. RESULTS: Compared with control/FA mice, control/DEP+BCAS mice exhibited increased dMBP (41%; P<0.01), Iba-1 (51%; P<0.0001), 4-hydroxynonenal (100%; P<0.0001), and 8-Oxo-2'-deoxyguanosine (65%; P<0.05). I-mTLR4 knockout attenuated responses to DEP/BCAS for all markers. CONCLUSIONS: i-mTLR4-ko markedly reduced neuroinflammation and oxidative stress and attenuated white matter degradation following DEP and CCH exposures. This suggests a potential role for targeting TLR4 signaling in individuals with vascular cognitive impairment, particularly those exposed to substantial ambient air pollution.


Assuntos
Aldeídos , Isquemia Encefálica , Estenose das Carótidas , Substância Branca , Animais , Camundongos , Microglia/metabolismo , Substância Branca/metabolismo , Emissões de Veículos/toxicidade , Doenças Neuroinflamatórias , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Isquemia Encefálica/metabolismo , Material Particulado/toxicidade , Estenose das Carótidas/metabolismo , Camundongos Endogâmicos C57BL
8.
Ecotoxicol Environ Saf ; 273: 116090, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364346

RESUMO

Airway epithelium, the first defense barrier of the respiratory system, facilitates mucociliary clearance against inflammatory stimuli, such as pathogens and particulates inhaled into the airway and lung. Inhaled particulate matter 2.5 (PM2.5) can penetrate the alveolar region of the lung, and it can develop and exacerbate respiratory diseases. Although the pathophysiological effects of PM2.5 in the respiratory system are well known, its impact on mucociliary clearance of airway epithelium has yet to be clearly defined. In this study, we used two different 3D in vitro airway models, namely the EpiAirway-full-thickness (FT) model and a normal human bronchial epithelial cell (NHBE)-based air-liquid interface (ALI) system, to investigate the effect of diesel exhaust particles (DEPs) belonging to PM2.5 on mucociliary clearance. RNA-sequencing (RNA-Seq) analyses of EpiAirway-FT exposed to DEPs indicated that DEP-induced differentially expressed genes (DEGs) are related to ciliary and microtubule function and inflammatory-related pathways. The exposure to DEPs significantly decreased the number of ciliated cells and shortened ciliary length. It reduced the expression of cilium-related genes such as acetylated α-tubulin, ARL13B, DNAH5, and DNAL1 in the NHBEs cultured in the ALI system. Furthermore, DEPs significantly increased the expression of MUC5AC, whereas they decreased the expression of epithelial junction proteins, namely, ZO1, Occludin, and E-cadherin. Impairment of mucociliary clearance by DEPs significantly improved the release of epithelial-derived inflammatory and fibrotic mediators such as IL-1ß, IL-6, IL-8, GM-CSF, MMP-1, VEGF, and S100A9. Taken together, it can be speculated that DEPs can cause ciliary dysfunction, hyperplasia of goblet cells, and the disruption of the epithelial barrier, resulting in the hyperproduction of lung injury mediators. Our data strongly suggest that PM2.5 exposure is directly associated with ciliary and epithelial barrier dysfunction and may exacerbate lung injury.


Assuntos
Lesão Pulmonar , Emissões de Veículos , Humanos , Emissões de Veículos/toxicidade , Lesão Pulmonar/metabolismo , Mucosa Respiratória , Material Particulado/metabolismo , Células Epiteliais , Epitélio
9.
Part Fibre Toxicol ; 21(1): 8, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409078

RESUMO

BACKGROUND: Inhalation of airborne particulate matter, such as silica and diesel exhaust particles, poses serious long-term respiratory and systemic health risks. Silica exposure can lead to silicosis and systemic autoimmune diseases, while DEP exposure is linked to asthma and cancer. Combined exposure to silica and DEP, common in mining, may have more severe effects. This study investigates the separate and combined effects of occupational-level silica and ambient-level DEP on lung injury, inflammation, and autoantibody formation in two genetically distinct mouse strains, thereby aiming at understanding the interplay between genetic susceptibility, particulate exposure, and disease outcomes. Silica and diesel exhaust particles were administered to mice via oropharyngeal aspiration. Assessments of lung injury and host response included in vivo lung micro-computed tomography, lung function tests, bronchoalveolar lavage fluid analysis including inflammatory cytokines and antinuclear antibodies, and histopathology with particle colocalization. RESULTS: The findings highlight the distinct effects of silica and diesel exhaust particles (DEP) on lung injury, inflammation, and autoantibody formation in C57BL/6J and NOD/ShiLtJ mice. Silica exposure elicited a well-established inflammatory response marked by inflammatory infiltrates, release of cytokines, and chemokines, alongside mild fibrosis, indicated by collagen deposition in the lungs of both C57BL/6J and NOD/ShilLtJ mice. Notably, these strains exhibited divergent responses in terms of respiratory function and lung volumes, as assessed through micro-computed tomography. Additionally, silica exposure induced airway hyperreactivity and elevated antinuclear antibody levels in bronchoalveolar lavage fluid, particularly prominent in NOD/ShiLtJ mice. Moreover, antinuclear antibodies correlated with extent of lung inflammation in NOD/ShiLTJ mice. Lung tissue analysis revealed DEP loaded macrophages and co-localization of silica and DEP particles. However, aside from contributing to airway hyperreactivity specifically in NOD/ShiLtJ mice, the ambient-level DEP did not significantly amplify the effects induced by silica. There was no evidence of synergistic or additive interaction between these specific doses of silica and DEP in inducing lung damage or inflammation in either of the mouse strains. CONCLUSION: Mouse strain variations exerted a substantial influence on the development of silica induced lung alterations. Furthermore, the additional impact of ambient-level DEP on these silica-induced effects was minimal.


Assuntos
Asma , Lesão Pulmonar , Camundongos , Animais , Emissões de Veículos/toxicidade , Lesão Pulmonar/patologia , Dióxido de Silício/toxicidade , Autoanticorpos/farmacologia , Anticorpos Antinucleares/farmacologia , Microtomografia por Raio-X , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C57BL , Pulmão , Citocinas/genética , Líquido da Lavagem Broncoalveolar , Inflamação/patologia , Material Particulado/toxicidade
10.
Part Fibre Toxicol ; 21(1): 6, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360668

RESUMO

BACKGROUND: Air pollution is recognized as an emerging environmental risk factor for neurological diseases. Large-scale epidemiological studies associate traffic-related particulate matter (PM) with impaired cognitive functions and increased incidence of neurodegenerative diseases such as Alzheimer's disease. Inhaled components of PM may directly invade the brain via the olfactory route, or act through peripheral system responses resulting in inflammation and oxidative stress in the brain. Microglia are the immune cells of the brain implicated in the progression of neurodegenerative diseases. However, it remains unknown how PM affects live human microglia. RESULTS: Here we show that two different PMs derived from exhausts of cars running on EN590 diesel or compressed natural gas (CNG) alter the function of human microglia-like cells in vitro. We exposed human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGLs) to traffic related PMs and explored their functional responses. Lower concentrations of PMs ranging between 10 and 100 µg ml-1 increased microglial survival whereas higher concentrations became toxic over time. Both tested pollutants impaired microglial phagocytosis and increased secretion of a few proinflammatory cytokines with distinct patterns, compared to lipopolysaccharide induced responses. iMGLs showed pollutant dependent responses to production of reactive oxygen species (ROS) with CNG inducing and EN590 reducing ROS production. CONCLUSIONS: Our study indicates that traffic-related air pollutants alter the function of human microglia and warrant further studies to determine whether these changes contribute to adverse effects in the brain and on cognition over time. This study demonstrates human iPSC-microglia as a valuable tool to study functional microglial responses to environmental agents.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Microglia/química , Células-Tronco Pluripotentes Induzidas/química , Automóveis , Espécies Reativas de Oxigênio , Emissões de Veículos/toxicidade , Emissões de Veículos/análise
11.
Environ Int ; 184: 108481, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330748

RESUMO

Combustion-derived particulate matter (PM) is a major source of air pollution. Efforts to reduce diesel engine emission include the application of biodiesel. However, while urban PM exposure has been linked to adverse brain effects, little is known about the direct effects of PM from regular fossil diesel (PMDEP) and biodiesel (PMBIO) on neuronal function. Furthermore, it is unknown to what extent the PM-induced effects in the lung (e.g., inflammation) affect the brain. This in vitro study investigates direct and indirect toxicity of PMDEP and PMBIO on the lung and brain and compared it with effects of clean carbon particles (CP). PM were generated using a common rail diesel engine. CP was sampled from a spark generator. First, effects of 48 h exposure to PM and CP (1.2-3.9 µg/cm2) were assessed in an in vitro lung model (air-liquid interface co-culture of Calu-3 and THP1 cells) by measuring cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress. None of the exposures caused clear adverse effects and only minor changes in gene expression were observed. Next, the basal medium was collected for subsequent simulated inhalation exposure of rat primary cortical cells. Neuronal activity, recorded using microelectrode arrays (MEA), was increased after acute (0.5 h) simulated inhalation exposure. In contrast, direct exposure to PMDEP and PMBIO (1-100 µg/mL; 1.2-119 µg/cm2) reduced neuronal activity after 24 h with lowest observed effect levels of respectively 10 µg/mL and 30 µg/mL, indicating higher neurotoxic potency of PMDEP, whereas neuronal activity remained unaffected following CP exposure. These findings indicate that combustion-derived PM potently inhibit neuronal function following direct exposure, while the lung serves as a protective barrier. Furthermore, PMDEP exhibit a higher direct neurotoxic potency than PMBIO, and the data suggest that the neurotoxic effects is caused by adsorbed chemicals rather than the pure carbon core.


Assuntos
Poluentes Atmosféricos , Ratos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Biocombustíveis , Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Material Particulado/análise , Carbono , Inflamação
12.
Int Immunol ; 36(5): 211-222, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38227765

RESUMO

The epithelial barrier theory links the recent rise in chronic non-communicable diseases, notably autoimmune and allergic disorders, to environmental agents disrupting the epithelial barrier. Global pollution and environmental toxic agent exposure have worsened over six decades because of uncontrolled growth, modernization, and industrialization, affecting human health. Introducing new chemicals without any reasonable control of their health effects through these years has led to documented adverse effects, especially on the skin and mucosal epithelial barriers. These substances, such as particulate matter, detergents, surfactants, food emulsifiers, micro- and nano-plastics, diesel exhaust, cigarette smoke, and ozone, have been shown to compromise the epithelial barrier integrity. This disruption is linked to the opening of the tight-junction barriers, inflammation, cell death, oxidative stress, and metabolic regulation. Consideration must be given to the interplay of toxic substances, underlying inflammatory diseases, and medications, especially in affected tissues. This review article discusses the detrimental effect of environmental barrier-damaging compounds on human health and involves cellular and molecular mechanisms.


Assuntos
Material Particulado , Emissões de Veículos , Humanos , Material Particulado/efeitos adversos , Emissões de Veículos/toxicidade , Junções Íntimas , Alérgenos , Estresse Oxidativo , Células Epiteliais
13.
Eur J Epidemiol ; 39(3): 241-255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38289519

RESUMO

BACKGROUND: Diesel exhaust (DE) is human carcinogen with sufficient evidence only for lung cancer. Systematic evidence on other cancer types is scarce, thus we aimed to systematically review current literature on the association between occupational DE exposure and risk of liver and pancreatic cancers. METHODS: We performed a systematic literature review to identify cohort studies on occupational DE exposure and risk of cancers other than lung. We computed pooled relative risks (RRs) and corresponding 95% confidence intervals (CIs) for liver and pancreatic cancers using DerSimonian and Laird random-effects model. RESULTS: Fifteen studies reporting results on pancreatic cancer and fourteen on liver cancer were included. We found a weakly increased risk of pancreatic cancer in workers exposed to DE (RR: 1.07, 95% CI: 1.00, 1.14), mainly driven by results on incidence (RR: 1.11, 95% CI: 1.02, 1.22). As for liver cancer, results were suggestive of a positive association (RR: 1.09; 95% CI: 0.99, 1.19), although a significant estimate was present in studies published before 2000 (RR: 1.41; 95% CI: 1.09, 1.82). We found no compelling evidence of publication bias. CONCLUSIONS: Our findings suggest an association between occupational DE exposure and liver and pancreatic cancer. Further studies with detailed exposure assessment, environmental monitoring data, and appropriate control for confounders are warranted.


Assuntos
Neoplasias Hepáticas , Doenças Profissionais , Exposição Ocupacional , Neoplasias Pancreáticas , Humanos , Emissões de Veículos/toxicidade , Exposição Ocupacional/efeitos adversos , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/epidemiologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/epidemiologia , Doenças Profissionais/epidemiologia
14.
Respir Res ; 25(1): 14, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178075

RESUMO

BACKGROUND: Ambient fine particulate matter (PM2.5) is considered a plausible contributor to the onset of chronic obstructive pulmonary disease (COPD). Mechanistic studies are needed to augment the causality of epidemiologic findings. In this study, we aimed to test the hypothesis that repeated exposure to diesel exhaust particles (DEP), a model PM2.5, causes COPD-like pathophysiologic alterations, consequently leading to the development of specific disease phenotypes. Sprague Dawley rats, representing healthy lungs, were randomly assigned to inhale filtered clean air or DEP at a steady-state concentration of 1.03 mg/m3 (mass concentration), 4 h per day, consecutively for 2, 4, and 8 weeks, respectively. Pulmonary inflammation, morphologies and function were examined. RESULTS: Black carbon (a component of DEP) loading in bronchoalveolar lavage macrophages demonstrated a dose-dependent increase in rats following DEP exposures of different durations, indicating that DEP deposited and accumulated in the peripheral lung. Total wall areas (WAt) of small airways, but not of large airways, were significantly increased following DEP exposures, compared to those following filtered air exposures. Consistently, the expression of α-smooth muscle actin (α-SMA) in peripheral lung was elevated following DEP exposures. Fibrosis areas surrounding the small airways and content of hydroxyproline in lung tissue increased significantly following 4-week and 8-week DEP exposure as compared to the filtered air controls. In addition, goblet cell hyperplasia and mucus hypersecretions were evident in small airways following 4-week and 8-week DEP exposures. Lung resistance and total lung capacity were significantly increased following DEP exposures. Serum levels of two oxidative stress biomarkers (MDA and 8-OHdG) were significantly increased. A dramatical recruitment of eosinophils (14.0-fold increase over the control) and macrophages (3.2-fold increase) to the submucosa area of small airways was observed following DEP exposures. CONCLUSIONS: DEP exposures over the courses of 2 to 8 weeks induced COPD-like pathophysiology in rats, with characteristic small airway remodeling, mucus hypersecretion, and eosinophilic inflammation. The results provide insights on the pathophysiologic mechanisms by which PM2.5 exposures cause COPD especially the eosinophilic phenotype.


Assuntos
Poluentes Atmosféricos , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Material Particulado/toxicidade , Material Particulado/análise , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Ratos Sprague-Dawley , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente
15.
Reprod Toxicol ; 123: 108516, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042436

RESUMO

There is evidence that sperm count has progressively declined in men over the recent decades. Exposure to air pollutants including petrol and diesel exhaust have been reported to impair male reproduction although there is little experimental evidence. This study investigated the effects of petrol-generator exhaust fumes (PGEF) on semen, sperm, gonadal structure and hormonal status in the dog. Sixteen adult male Basenji dogs were randomly assigned four to each of 4 groups as follows: an unexposed (Control) group and three groups exposed to graded levels of PGEF for 1, 2 or 3 h per day (hpd), respectively, for 90 days. Serum concentrations of testosterone (T), follicle stimulating hormone (FSH) and luteinizing hormone (LH) were measured on days 0 (baseline), 30, 60 and 90 of the study. At day 90, semen samples were collected for semen and sperm analysis. Testicular and epididymal tissues were subjected to gross, histopathological and histomorphometric evaluation. Graded exposure to PGEF resulted in increased serum concentration of T and decreased concentrations of FSH and LH, increased seminal plasma lipid peroxidation, seminiferous and epididymal tubular degeneration, germ cell depletion, lowered sperm concentration, decreased sperm motility and vitality, and increased sperm abnormal morphology. The close proximity between dogs and humans in exposed environments underscores the importance of these findings to human reproductive health and fertility. The findings suggest that with prolonged exposure, the impairment of reproductive functions will likely play significant roles in the decline in male fertility.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Testículo , Adulto , Masculino , Cães , Humanos , Animais , Emissões de Veículos/toxicidade , Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Hormônio Luteinizante , Hormônio Foliculoestimulante , Testosterona , Contagem de Espermatozoides
16.
Environ Int ; 183: 108359, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056096

RESUMO

Diesel exhaust particulate matter (DEPM) are important components of urban air pollution worldwide. Recent studies proved that airborne DEPM can enter the human brain, which was associated with brain and mental diseases. In this study, we investigated the effects of DEPM exposure on behavior, and explored potential mechanisms from the perspective of metabolism in specific brain regions and short chain fatty acids (SCFAs) in the gut using mice. The results showed that inhalation of DEPM induced locomotor hyperactivity and a tendency for memory decline in mice. Exposure to DEPM disrupted motor behavior generation related cerebellar Purkinje cells, induced widespread reduction of neurotransmitters in the frontal cortex, and downregulated expression of genes encoding Brain-derived neurotrophic factor (BDNF) and involved in the Brain-blood-barrier (BBB) in the hippocampus. Moreover, there was a DEPM dose-dependent increase in fecal SCFA levels. Correlation analysis showed that DEPM-induced locomotor hyperactivity was mainly associated with decreased neurotransmission in the frontal cortex and increased gut SCFAs, and those associations were discussed. This study provides new insights into the mechanisms underpinning behavioral changes caused by air pollution, and extends our knowledge on the toxicity and health effects of airborne pollutants.


Assuntos
Poluentes Atmosféricos , Humanos , Animais , Camundongos , Poluentes Atmosféricos/toxicidade , Emissões de Veículos/toxicidade , Material Particulado/toxicidade , Encéfalo , Barreira Hematoencefálica , Exposição por Inalação
17.
Environ Pollut ; 342: 123087, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061431

RESUMO

Traffic-related air pollution (TRAP) exposure is associated with systemic health effects, which can be studied using blood-based markers. Although we have previously shown that high TRAP concentrations alter the plasma proteome, the concentration-response relationship between blood proteins and TRAP is unexplored in controlled human exposure studies. We aimed to identify concentration-dependent plasma markers of diesel exhaust (DE), a model of TRAP. Fifteen healthy non-smokers were enrolled into a double-blinded, crossover study where they were exposed to filtered air (FA) and DE at 20, 50 and 150 µg/m3 PM2.5 for 4h, separated by ≥ 4-week washouts. We collected blood at 24h post-exposure and used label-free mass spectrometry to quantify proteins in plasma. Proteins exhibiting a concentration-response, as determined by linear mixed effects models (LMEMs), were assessed for pathway enrichment using WebGestalt. Top candidates, identified by sparse partial least squares discriminant analysis and LMEMs, were confirmed using enzyme-linked immunoassays. Thereafter, we assessed correlations between proteins that showed a DE concentration-response and acute inflammatory endpoints, forced expiratory volume in 1 s (FEV1) and methacholine provocation concentration causing a 20% drop in FEV1 (PC20). DE exposure was associated with concentration-dependent alterations in 45 proteins, which were enriched in complement pathways. Of the 9 proteins selected for confirmatory immunoassays, based on complementary bioinformatic approaches to narrow targets and availability of high-quality assays, complement factor I (CFI) exhibited a significant concentration-dependent decrease (-0.02 µg/mL per µg/m3 of PM2.5, p = 0.04). Comparing to FA at discrete concentrations, CFI trended downward at 50 (-2.14 ± 1.18, p = 0.08) and significantly decreased at 150 µg/m3 PM2.5 (-2.93 ± 1.18, p = 0.02). CFI levels were correlated with FEV1, PC20 and nasal interleukin (IL)-6 and IL-1ß. This study details concentration-dependent alterations in the plasma proteome following DE exposure at concentrations relevant to occupational and community settings. CFI shows a robust concentration-response and association with established measures of airway function and inflammation.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Humanos , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Proteoma , Estudos Cross-Over , Testes de Função Respiratória , Interleucina-6 , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise
18.
Environ Pollut ; 341: 122597, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37741543

RESUMO

There are strong suggestions for a link between pulmonary tuberculosis (TB) and air quality. Diesel exhaust is one of the main contributors to pollution and it is reported to be able to modify susceptibility to lung infections. In this study we exposed THP-1 human macrophages and Mycobacterium bovis BCG to diesel exhaust particles (DEPs). High cytotoxicity and activation of apoptosis was found in THP-1 cells at 3 and 6 days, but no effect was found on the growth of M. bovis BCG. Infection of THP-1 cells exposed to a non-cytotoxic DEP concentration showed a limited capacity to engulf latex beads. However, M. bovis BCG infection of macrophages did not result in an increase in the bacterial burden, but it did result in an increase in the bacteria recovered from the extracellular media, suggesting a poor contention of M. bovis BCG. We also observed that DEP exposure limited the production of cytokines. Using the Galleria mellonella model of infection, we observed that larvae exposed to low levels of DEPs were less able to survive after infection with M. bovis BCG and had a higher internal bacterial load after 4 days of infection. Unraveling the links between air pollution and impairment of human antimycobacterial immunity is vital, because pollution is rapidly increasing in areas where TB incidence is extremely high.


Assuntos
Mycobacterium bovis , Animais , Humanos , Emissões de Veículos/toxicidade , Macrófagos , Citocinas , Larva
19.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L83-L97, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084400

RESUMO

Macrophage populations exist on a spectrum between the proinflammatory M1 and proresolution M2 states and have demonstrated the ability to reprogram between them after exposure to opposing polarization stimuli. Particulate matter (PM) has been repeatedly linked to worsening morbidity and mortality following respiratory infections and has been demonstrated to modify macrophage function and polarization. The purpose of this study was to determine whether diesel exhaust particles (DEP), a key component of airborne PM, would demonstrate polarization state-dependent effects on human monocyte-derived macrophages (hMDMs) and whether DEP would modify macrophage reprogramming. CD14+CD16- monocytes were isolated from the blood of healthy human volunteers and differentiated into macrophages with macrophage colony-stimulating factor (M-CSF). Resulting macrophages were left unpolarized or polarized into the proresolution M2 state before being exposed to DEP, M1-polarizing conditions (IFN-γ and LPS), or both and tested for phagocytic function, secretory profile, gene expression patterns, and bioenergetic properties. Contrary to previous reports, we observed a mixed M1/M2 phenotype in reprogrammed M2 cells when considering the broader range of functional readouts. In addition, we determined that DEP exposure dampens phagocytic function in all polarization states while modifying bioenergetic properties in M1 macrophages preferentially. Together, these data suggest that DEP exposure of reprogrammed M2 macrophages results in a highly inflammatory, highly energetic subpopulation of macrophages that may contribute to the poor health outcomes following PM exposure during respiratory infections.NEW & NOTEWORTHY We determined that reprogramming M2 macrophages in the presence of diesel exhaust particles (DEP) results in a highly inflammatory mixed M1/M2 phenotype. We also demonstrated that M1 macrophages are particularly vulnerable to particulate matter (PM) exposure as seen by dampened phagocytic function and modified bioenergetics. Our study suggests that PM causes reprogrammed M2 macrophages to become a highly energetic, highly secretory subpopulation of macrophages that may contribute to negative health outcomes observed in humans after PM exposure.


Assuntos
Infecções Respiratórias , Emissões de Veículos , Humanos , Emissões de Veículos/toxicidade , Macrófagos/metabolismo , Fenótipo , Diferenciação Celular , Material Particulado/toxicidade
20.
Chemosphere ; 346: 140480, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37879369

RESUMO

Maternal exposure to particulate matter derived from diesel exhaust has been shown to cause metabolic dysregulation, neurological problems, and increased susceptibility to diabetes in the offspring. Diesel exhaust is a major source of air pollution and the use of biodiesel (BD) and its blends have been progressively increasing throughout the world; however, studies on the health impact of BD vs. petrodiesel combustion-generated exhaust have been controversial in part, due to differences in the chemical and physical nature of the associated particulate matter (PM). To explore the long-term impact of prenatal exposure, pregnant mice were exposed to PM generated by combustion of petrodiesel (B0) and a 20% soy BD blend (B20) by intratracheal instillation during embryonic days 9-17 and allowed to deliver. Offspring were then followed for 52 weeks. We found that mother's exposure to B0 and B20 PM manifested in striking sex-specific phenotypes with respect to metabolic adaptation, maintenance of glucose homeostasis, and medial hypothalamic glial cell makeup in the offspring. The data suggest PM exposure limited to a narrower critical developmental window may be compensated for by the mother and/or the fetus by altered metabolic programming in a marked sex-specific and fuel-derived PM-specific manner, leading to sex-specific risk for diseases related to environmental exposure later in life.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Masculino , Feminino , Camundongos , Animais , Material Particulado/toxicidade , Material Particulado/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Biocombustíveis/toxicidade , Biocombustíveis/análise , Exposição Ambiental , Gasolina/análise , Poluentes Atmosféricos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...